Back to portfolio
Section 12

Retrieval Augmented Generation (RAG)

Architecting systems that ground LLMs in private data using Vector Databases (Pinecone, FAISS).

Projects in this section: 0

Pilaw.io
Retrieval Augmented Generation (RAG)External link

Pilaw.io

Scalable RAG platform with hybrid search and reranking.

VEV RAG
Retrieval Augmented Generation (RAG)GitHub

VEV RAG

High-performance agentic RAG with hybrid search running 100% locally on CPU.

Tellow RAG
Retrieval Augmented Generation (RAG)GitHub

Tellow RAG

Universal document RAG system with LanceDB and Docling.

DocSearchAI
Retrieval Augmented Generation (RAG)GitHub

DocSearchAI

CPU-optimized semantic search with FAISS and BART summarization.

Search System
Retrieval Augmented Generation (RAG)GitHub

Search System

RAG system with FAISS semantic search and automatic summarization.

Agentic RAG App
Retrieval Augmented Generation (RAG)Local path

Agentic RAG App

Interactive RAG application.

Pinecone Serverless Reranking
Retrieval Augmented Generation (RAG)Local path

Pinecone Serverless Reranking

Optimization of retrieval precision.

RAG Pipeline (LangChain/Hugging Face)
Retrieval Augmented Generation (RAG)Local path

RAG Pipeline (LangChain/Hugging Face)

Implementation of a retrieval system.

Vector DB Benchmark
Retrieval Augmented Generation (RAG)Local path

Vector DB Benchmark

FAISS vs ChromaDB comparison.